Monitoring significant ST changes through deep learning
نویسندگان
چکیده
منابع مشابه
Crop Land Change Monitoring Based on Deep Learning Algorithm Using Multi-temporal Hyperspectral Images
Change detection is done with the purpose of analyzing two or more images of a region that has been obtained at different times which is Generally one of the most important applications of satellite imagery is urban development, environmental inspection, agricultural monitoring, hazard assessment, and natural disaster. The purpose of using deep learning algorithms, in particular, convolutional ...
متن کاملHybrid Heterogeneous Transfer Learning through Deep Learning
Most previous heterogeneous transfer learning methods learn a cross-domain feature mapping between heterogeneous feature spaces based on a few cross-domain instance-correspondences, and these corresponding instances are assumed to be representative in the source and target domains respectively. However, in many realworld scenarios, this assumption may not hold. As a result, the constructed feat...
متن کاملSimulated Transfer Learning Through Deep Reinforcement Learning
This paper encapsulates the use reinforcement learning on raw images provided by a simulation to produce a partially trained network. Before training is continued, this partially trained network is fed different raw images that are more tightly coupled with a richer representation of the non-simulated environment. The use of transfer learning allows for the model to adjust to this richer repres...
متن کاملIncremental Learning Through Deep Adaptation
Given an existing trained neural network, it is often desirable to be able to add new capabilities without hindering performance of already learned tasks. Existing approaches either learn sub-optimal solutions, require joint training, or incur a substantial increment in the number of parameters for each added task, typically as many as the original network. We propose a method which fully prese...
متن کاملOptimal Auctions through Deep Learning
Designing an auction that maximizes expected revenue is an intricate task. Despite major efforts, only the single-item case is fully understood (Myerson, 1981). In this work, we initiate the exploration of the use of tools from deep learning for the automated design of optimal auctions. The design objective is revenue optimal, dominant-strategy incentive compatible auctions. We show that multi-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Electrocardiology
سال: 2018
ISSN: 0022-0736
DOI: 10.1016/j.jelectrocard.2018.07.026